Calculator for Cross Section, Mass, Axial & Polar Area Moment of Inertia and Section Modulus

This online calculator computes the axial and polar area moments of inertia (also known as second moment of area or second area moment), the section modulus, the outer-fibre distance and the cross sectional area of many beams. From many surfaces, the torsional moment of inertia and the torsionial section modulus can also be calculated.

In addition, the mass can be computed, too. Steel, aluminum and different types of wood are available as material. At the bottom of the page, the formulas for the axial area moment of inertia and section modulus are listed in a table.

Calculator for Area Moment of Inertia and Section Modulus

By default, one can calculate the moments, mass and cross section for an I-beam (I100).

 

cross section
height H mm
width B mm
material *
diameter d mm
height h mm
width b mm
length of beam * m
Bild eines I-Trägers

 

   

units:  mm     cm
can be changed later, too

2nd area moment   section modulus
in mm4   in mm3
Iy   Wy  
Iz   Wz  
It   Wt  
Ip    
cross section
mm2
mass
kg

outer-fibre distance:

 

* You have to fill in these fields only if the mass should be calculated, too. Only the smallest section modulus will be calculated!

Explanation of the abbreviations

Dm diameter in mm
Iy, Iz axial area moments of inertia
Wy, Wz section modulus
It torsional moment of inertia
Wt torsional section modulus
Ip polar area moments of inertia: Ip = Iy + Iz
for circular cross sections: It = Ip
e1-4 outer-fibre distance, see following section

Outer-fibre distance

The outer-fibre distance is the distance from the neutral fiber to the outer fibre. For homogeneous cross-sections, the neutral fibre always runs through the center of gravity SP of the surface which lies in the center of the coordinate system. The 4 outer fibres are the furthest away from the respective coordinate axes.

The sketch shows which lengths denote the four outer-fiber distances e1, e2, e3 and e4.

Therefore the lengths e1 and e2 are the vertical outer-fibre distances and the lengths e3 and e4 are to the horizontal outer-fibre distances.

 

Outer-fibre distance
Outer-fibre distance

Table of contents

Manual

  • The following cross sectional areas are available, whereby profiles marked by * can have a clearance hole (bore), too:
    • circle, with slot too *
    • pipe / hollow circular
    • semi-circle
    • rectangle-section *
    • rectangle-pipe / hollow rectangular *
    • I/H-section (I/H-beam) *
    • U/C-section (U/C-beam) *
    • T-section (T-beam)
    • L-section (angle section), isosceles and not isosceles
    • L-section (isosceles) rotated through 45°
    • isosceles triangle
    • hexagon / six-sided figure
    • octagon / eight-sided figure

  • Below you will find sketches of all cross sectional areas. The cross sectional areas must always be symmetrical to the two coordinate axes.
  • All white fields have to be completed. Results are displayed on a green background.
  • Accuracy can not be guaranteed - for corrections or additions please use my contact form!

Background Knowledge and Formulas

In the following table you will find the formulas for the axial area moments of inertia and the section modulus. Then the mathematical relationship between these two quantities is explained.

Formulas for axial Area Moments of Inertia & Section Modulus

The following relationships apply to all the formulas listed in the table below:

  • b3 = B - b
  • b4 = B - 2·b
  • h3 = H - h
  • h4 = H - 2·h

 

Cross Section Axial Area Moment of Inertia Section Modulus

circle-section
     

pipe-section
     

rectangle-section
     
     

rectangle-pipe
          
b4 = B - 2·b          h4 = H - 2·h         (b4 and h4 = inside dimensions)
     

I/H-section
    
b3 = B - b          h4 = H - 2·h
    

C/U-section

b3 = B - b
h4 = H - 2·h
    
    
     

T-section

b3 = B - b h3 = H - h
     
     
     

L-section

b3 = B - b
h3 = H - h
     
     
     
     

triangle-section
             
          
     

semi-circle
     
  
     

Sechskant/Sechseck

hexagon
     
  

Achtkant/Achteck

octagon
     

Correlation Section Modulus < > Area Moment of Inertia

The section modulus can be calculated by the following formulas if the area moment of inertia and the outer-fibre distance are known.

 

The section modulus Wy relative to the y-axis is:

Widerstandsmoment bezüglich der y-Achse

 

The section modulus Wz relative to the z-axis is:

Widerstandsmoment bezüglich der z-Achse

Iy area moment of inertia relative to the y-axis
Iz area moment of inertia relative to the z-axis
e1 lower outer-fibre distance in the z-direction
e2 upper outer-fibre distance in the z-direction
e3 left outer-fibre distance in the y-direction
e4 right outer-fibre distance in the y-direction
Outer-fibre distance
Outer-fibre distance

If the cross sectional area is not symmetrical to an axis (e1 ≠ e2 and/or e3 ≠ e4), there are two different section modulus relative to this axis, see figure above. Only the smallest section modulus will be calculated!

Additional Information about the Calculator

Comparison: idealized model and real I-beam I100

Figure 1: On the left a narrow I-beam I100, on the right the simplified model.
Figure 1: On the left a narrow I-beam I100, on the right the simplified model.

In figure 1 you can see a narrow I-beam I100 on the left, on the right you find a simplified model, as it used by the calculator.

 

The variations in the calculation arise from the fact that the real I-beam has oblique flange surfaces and the inner edges are rounded. This can be seen very well in figure 1.

 

All drawings were created by using the free programs FreeCAD and GIMP.

 

The following table compares the calculated values and the real values:

 


 

 

Iy

in cm4

Wy

in cm3

Iz

in cm4

Wz

in cm3

A

in mm2

m'

in kg/m

calculated values 172.1 34.4  14.2 5.7 1069 8.40
real values 171 34.2 12.2 4.88 1060 8.34
variations in % 0.64 0.58 16.4 16.8 0.85 0.72

 

As you can see, Iy and Wy, the cross sectional area A and the mass per meter match very well. The z-values differ slightly more, but are still useful as an estimate.

Sketches of the available cross sectional areas

These 20 profiles can be selected as a cross sectional area on the calculator:

 

cross sectional area of a circle-section
circle-section
cross sectional area of a rectangle-section
rectangle-section
cross sectional area of a I/H-section
I/H-section
cross sectional area of a T-section
T-section
cross sectional area of a hexagon/six-sided figure
hexagon/six-sided figure
cross sectional area of a circle-section with slot
circle-section with slot
cross sectional area of a rectangle-section with clearance hole
rectangle with bore
cross sectional area of a I/H-section with a clearance hole
I/H-section with bore
cross sectional area of a L-section
L-section
cross sectional area of a octagon/eight-sided figure
octagon
cross sectional area of a circle-section with clearance hole
circle-section with bore
cross sectional area of a rectangle-pipe
rectangle-pipe
cross sectional area of a C/U-section
C/U-section
cross sectional area of a triangle-section
triangle-section
cross sectional area of a rectangle with clearance hole
rectangle with bore
cross sectional area of a pipe-section
pipe-section
cross sectional area of a rectangle-pipe with bore
rectangle-pipe with bore
cross sectional area of a C/U-section with a clearance hole
C/U-section with bore
cross sectional area of a semi-circle
semi-circle
cross sectional area of a L-section rotated through 45°
L-section rotated

Page created on 04 June 2019. Last change: 27 October 2019.